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A B S T R A C T   

Progress in deep learning, more specifically in using convolutional neural networks (CNNs) for the creation of 
classification models, has been tremendous in recent years. Within bioacoustics research, there has been a large 
number of recent studies that use CNNs. Designing CNN architectures from scratch is non-trivial and requires 
knowledge of machine learning. Furthermore, hyper-parameter tuning associated with CNNs is extremely time 
consuming and requires expensive hardware. In this paper we assess whether it is possible to build good bio
acoustic classifiers by adapting and re-using existing CNNs pre-trained on the ImageNet dataset – instead of 
designing them from scratch, a strategy known as transfer learning that has proved highly successful in other 
domains. This study is a first attempt to conduct a large-scale investigation on how transfer learning can be used 
for passive acoustic monitoring (PAM), to simplify the implementation of CNNs and the design decisions when 
creating them, and to remove time consuming hyper-parameter tuning phases. We compare 12 modern CNN 
architectures across 4 passive acoustic datasets that target calls of the Hainan gibbon Nomascus hainanus, the 
critically endangered black-and-white ruffed lemur Varecia variegata, the vulnerable Thyolo alethe Chamaetylas 
choloensis, and the Pin-tailed whydah Vidua macroura. We focus our work on data scarcity issues by training PAM 
binary classification models very small datasets, with as few as 25 verified examples. Our findings reveal that 
transfer learning can result in up to 82% F1 score while keeping CNN implementation details to a minimum, thus 
rendering this approach accessible, easier to design, and speeding up further vocalisation annotations to create 
PAM robust models.   

1. Introduction 

Passive acoustic monitoring (PAM) surveys often result in vast 
quantities of audio data which researchers frequently process manually 
when searching for particular vocalisation events. Studies have shown 
that this manual processing can be alleviated through the use of con
volutional neural networks (CNNs) (LeCun et al., 1989, 1998) that can 
be trained to find vocalisation events in large audio datasets (e.g. whales 
(Bermant et al., 2019), cats (Nanni et al., 2020), birds (Zhong et al., 
2021), bats (Paumen et al., 2021), gibbons (Dufourq et al., 2021), 
chimpanzees (Anders et al., 2021) and seals (Escobar-Amado et al., 
2022)). While these results are encouraging several issues still persist, of 
which we highlight three. Firstly, non-machine learning experts are 

faced with the decision of deciding on suitable neural network archi
tectures, a non-trivial task. While architectures along with their software 
implementation do exist (e.g. VGG16 (Simonyan and Zisserman, 2014)), 
there are no clear guidelines as to which one is suitable for the creation 
of a PAM classifier. Thus, the development of CNNs is accessible pri
marily to individuals who have knowledge in deep learning. The second 
issue is that of training CNNs on acoustic datasets which contain very 
few vocalisation examples of the various species which can result in 
overfitting (Hawkins, 2004); a term which means that the model is able 
to perform well on the training data but poorly on new data that was not 
used in training. In certain cases it might be difficult to obtain additional 
audio data (e.g. due to inaccessible habitat or small population size due 
to species being threatened). Thirdly, hyper-parameter tuning is a time 
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consuming step which involves exploring various neural network hyper- 
parameters to obtain the most optimal model. When combined, these 
three problems render the creation and utilisation of CNNs to solve 
bioacoustics research questions challenging to machine learning experts 
and non-experts alike. 

Similar issues are commonly addressed in the broader deep learning 
literature by using transfer learning (Pan and Yang, 2009; Weiss et al., 
2016), a modelling strategy that uses a model trained on one dataset for 
the purposes of prediction on another dataset. Transfer learning exploits 
the fact that parameter estimation in neural networks is performed by 
iterative numerical optimization, so that parameters found to perform 
well on one task (say one with input variables X and output variables Y) 
can be used as starting points for other, similar tasks (e.g. one with in
puts V and outputs W). Typically the inputs of the target task V need to 
be transformed into a similar form as those of the source task X. The 
neural network which is trained on data (X, Y) is typically referred to as 
the pre-trained model. 

CNNs, like all neural networks, are made up of layers, with the 
output of one layer forming the input to the next. Layers can be thought 
of as organised into two parts: some layers (typically the earlier ones) 
learn which visual features are relevant to the problem at hand, while 
others learn how to use those visual features to classify images into one 
of the target classes. These roles are referred to as feature extraction and 
classification respectively. All layers contain weight parameters that are 
simultaneously optimized across the network, reflecting the comple
mentary nature of feature extraction and classification tasks. However, 
it is also true that the same kinds of visual features (e.g. edges, simple 
geometric shapes) are important for many image classification prob
lems, and thus a popular approach within computer vision research is to 
retain only the feature extraction layers of a CNN, removing the last (or 
last few) classification layers that have been trained for a specific 
problem and replacing these with new one(s) that can be retrained for 
the new task (based on the number of categories to be classified within 
target task W). Weights for the new layers must be learned “from 
scratch”, but weights for the feature extraction layers can either be set 
(“frozen”) to their existing (“pre-trained”) values, or can be retrained 
using the pre-trained values as starting values, a process known as “fine 
tuning” because, if the same visual features are relevant to the new 
problem, then weights will not change very much from their pre-trained 
values. The benefit of freezing the feature extraction layers is compu
tational – there are often far fewer weights that require optimisation – 
which is particularly useful if the target task must be addressed with a 
relatively small dataset because the risk of overfitting without transfer 
learning is substantial. Within computer vision research, transfer 
learning has shown great success over CNNs trained from randomly 
initialised weights (Tan et al., 2018; Lu et al., 2015; Shao et al., 2018; 
Jaramillo et al., 2018; Mehra et al., 2018; Lopez et al., 2017). Transfer 
learning has successfully been applied in other areas of research, e.g. 
quality prediction (Liu et al., 2019) and medical applications (Yi and 
Wang, 2021; Kübra Karaca et al., 2021). 

Transfer learning within the context of PAM is still relatively 
underexplored and is the focus of our work and contributions. This study 
assesses the ability of a variety of modern transfer learning models to 
accurately classify animal calls within four bioacoustic datasets, and the 
influence of various modelling decisions – how many calls are anno
tated, what CNN architecture is used, and preprocessing steps – on that 
accuracy. We propose that transfer learning can simplify CNN archi
tecture design as it is simpler to load a pre-trained model than to build a 
suitable CNN. Furthermore, transfer learning is known to alleviate the 
problem of overfitting and finally, less hyper-parameter tuning would be 
required. This serves the rationale of our investigation, to explore a large 
number of pre-trained CNNs in as many configurations as possible to 
provide a guide to researchers so as to reduce the time spent on the 
model development and to accelerate the rate at which vocalisation 
events are found. Initially in an acoustic survey, only a relatively small 
number of manually annotated vocalisation examples may be available. 

Thus, we hypothesise that transfer learning would enable further similar 
examples to be obtained rapidly, which would in turn result in addi
tional model training to find the next set of similar examples at a rapid 
pace. In particular, we focus on very small datasets, with as few as 25, 
50, 100 or 200 examples. 

We contribute to PAM by demonstrating that pre-trained CNNs can 
successfully be trained on very few examples. We compared twelve 
modern pre-trained CNNs to guide researchers on which are most 
optimal. We argue that this approach is simpler to implement, and a 
larger audience of researchers could use this approach rather than 
implementing CNNs from scratch which requires expert knowledge. Our 
study is the first to conduct a thorough investigation into transfer 
learning for PAM and our findings can guide researchers working in 
PAM. We provide approximately 90 hours of manually verified audio 
data to train binary classification models. In the next section we discuss 
relevant literature and argue that there has been no study that has 
explored transfer learning at such a large-scale within animal 
bioacoustics. 

2. Related literature 

We begin by presenting relevant literature on transfer learning for 
PAM and then make an argument that further research within these two 
combined areas is still required. The literature reveals that, on average, 
only one pre-trained CNN was used and that a ResNet based network was 
a common choice, in particular ResNet50 (He et al., 2016a) was 
frequently used (Zhong et al., 2020; Henri and Mungloo-Dilmohamud, 
2021; Waddell et al., 2021; Efremova et al., 2019; Sankupellay and 
Konovalov, 2018). Authors mentioned that this was due to its efficiency 
and accuracy. Sankupellay and Konovalov (2018) used ResNet50 which 
was pre-trained on the ImageNet dataset (Deng et al., 2009). The authors 
applied it to a bird vocalisation dataset that contained 46 species. The 
only modification to the network was that they replaced the last fully 
connected layer (which was pre-trained on the 1,000 class ImageNet 
dataset) with 46 softmax units. The spectrograms were duplicated to 
meet the input of ResNet50 which expects 3 channels. Zhong et al. 
(2020) compared VGG16 that was randomly initialised to a ResNet50 
model that was pre-trained on ImageNet. In both cases, a colour mel 
spectrogram was input into the network. The spectrograms were resized 
to match the network's input of 224 by 224. Their models were applied 
to bird and amphibian vocalisations. ResNet50 pre-trained on ImageNet 
was also used by LeBien et al. (2020) whereby the pre-trained feature 
extractor was used and then two fully connected layers were added to 
the CNN. Zhong et al. (2021) applied ResNet50 to a birdsong dataset 
that contained three classes (two bird presence and one absence). The 
CNN was pre-trained on ImageNet and the fully connected layer, fol
lowed by a dropout and an output layer was added to the CNN that was 
then fine-tuned on the birdsong dataset. Colour spectrograms stored as 
PNG images were used as input to the CNN. Low resource computational 
devices were the focus of the study of Disabato et al. (2021). Three layers 
(the first convolution, first pooling, and second convolution) were 
extracted from ResNet18 (He et al., 2016a) (pre-trained on ImageNet) 
and a fully connected output layer was added. This model was less 
computationally expensive compared to commonly used CNNs used 
within the literature, and thus, sets the premise for exploring models 
that are both accurate and are able to be executed on hardware with 
limited resources. 

While ResNet based architectures was most commonly used, other 
architectures were also used within the literature and are presented 
next. Lu et al. (2021) used AlexNet (Krizhevsky et al., 2012) that was 
pre-trained on the ImageNet dataset. The input was colour spectrogram 
images. They explored the effect of varying the number of last layers 
(starting from the output layer) within the network which were trained 
from random initialisation. The number of layers that they explored to 
be randomly initialised were 3, 6 and 9. They created a binary classifi
cation model (presence and absence) for which there was little effect on 
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the number of randomly initialised layers. A three class classification 
model (one for each species of killer whale, long-finned pilot whale and 
harp seals) was explored and the accuracy increased when a larger 
number of layers was randomly initialised (from 3 to 9). The training 
time did not significantly increase as a result. Ntalampiras et al. (2021) 
created a classifier for cat vocalisations and consequently created a 
mobile application. The authors used YAMNet 1 pre-trained on the 
AudioSet-YouTube corpus (Gemmeke et al., 2017) which is an audio 
event classification dataset containing 512 classes. This CNN architec
ture is based on VGGish (Hershey et al., 2017) but however it contains 
fewer trainable parameters which would be advantageous when 
creating a mobile application. A pre-trained VGGish model was used by 
Çoban et al. (2020) to soundscape classification. Khalighifar et al. 
(2022) used Inception v3 (Szegedy et al., 2016) pre-trained on ImageNet 
to develop a classifier for the monitoring of mosquito populations via 
smartphone recordings of the wingbeats. The same model was used for 
the classification of 41 Philippine frog species in the study of Khalighifar 
et al. (2021). Models pre-trained on ImageNet was common within the 
literature. Leroux et al. (2021) explored a CNN that was pre-trained on 
human speech and was used as a feature extractor. Incze et al. (2018) 
explored MobileNet (Howard et al., 2017) pre-trained on the ImageNet 
dataset on bird vocalisations collected from Xeno-canto.2 They fine- 
tuned MobileNet on three dataset configurations (2, 10 and 50 classes) 
and two input configurations grey scale and “jet” colour. Both input 
configurations convert the spectrograms into a different representation 
where the latter is one that normalises the values between 0 (blue) and 1 
(red). The findings reveal that the “jet” colour map produced better 
results than the greyscaled colour map. 

There were not a large number of studies that compared various pre- 
trained neural network architectures. Xie et al. (2018) compared various 
implementations of VGG16 pre-trained on the ImageNet dataset. Their 
results show that VGG16 with transfer learning (whereby the feature 
extractor was frozen) did not outperform VGG16 with random initiali
sation. To overcome this, a multi-channel model was created which 
inputs Short-time Fourier transform, mel-spectrogram and chirplet 
spectrograms into three separate pre-trained VGG16 models respec
tively. This approach led to the best results and had considerably less 
neural network trainable parameters compared to the single VGG16 
with random initialisation. Henri and Mungloo-Dilmohamud (2021) 
collected and created a birdsong dataset from Xeno-Canto to create a 
CNN classifier. The authors compared MobileNetV2 (Sandler et al., 
2018), Inception v2 (Szegedy et al., 2016), ResNet50 and a custom 
model - the former three networks were pre-trained on ImageNet. Mel 
spectrograms were used as input to the CNN. MobileNetV2 performed 
the best and outperformed the custom model by roughly 2 percent. 
Thakur et al. (2019) compared variants of VGG based models and the 
findings reveal that when transfer learning was used the model out
performed its counterpart which did not use transfer learning. 

There were only two studies for which transfer learning did not 
improve results as opposed to training the CNN from randomly ini
tialised weights (Morgan and Braasch, 2021; Pamula et al., 2020). There 
are also studies in the literature for which the authors implement their 
own CNN from randomly initialised weights and do not make use of 
transfer learning (Ruff et al., 2020; Dufourq et al., 2021; Nolasco et al., 
2019) and other studies for which the authors make use of existing ar
chitectures but did not use transfer learning (Bergler et al., 2019; Jiang 
et al., 2019). To the best of our knowledge, all recent and relevant 
studies were surveyed. 

Based on the literature review, it is clear that transfer learning can 
result in better PAM classifiers. Furthermore, a thorough analysis has yet 
to be conducted by comparing a large number of pre-trained CNNs 

across multiple datasets as a means of guiding researchers. Finally, a 
comparison of the use of fine-tuning and the effects of the dataset size 
has yet to be conducted, thus answering the question, “how many audio 
examples are required to train a CNN model that will perform suffi
ciently well?” This forms the rationale for this study; a thorough analysis 
of various CNNs on all possible configurations of transfer learning on 
four different species. Given that one of the rationales for using transfer 
learning is to overcome the limitations of overfitting due to small dataset 
sizes, we explore various dataset sizes to determine which configuration 
is best suited when creating a PAM classifier in a setting where little data 
is available. This study compares the performance of CNNs pre-trained 
on ImageNet on four binary bioacoustic datasets for the vocalisation 
detection of the critically endangered Hainan gibbon Nomascus haina
nus, the critically endangered black-and-white ruffed lemur Varecia 
variegata, the vulnerable Thyolo alethe Chamaetylas choloensis, and the 
Pin-tailed whydah Vidua macroura. Given the recent work in exploring 
low resource devices by Disabato et al. (2021), this study will also 
demonstrate how transfer learning can be used to train CNNs with fewer 
neural network parameters and thus enable researchers to train on less 
expensive hardware. 

3. Materials and methods 

3.1. Data collection 

In this study we used four datasets, containing different species, that 
were collected and provided by various researchers. Several experi
ments, defined in the next section, were conducted to assess the use of 
transfer learning in the process of creating binary classification models. 
In each case PAM devices were set to record for a number of hours across 
multiple days, however the start time and duration of each recording 
differed for each study. Details for each dataset are listed below.  

1. The “lemurs” dataset contained approximately 75 hours of audio 
data that contained calls of the Critically Endangered black-and- 
white ruffed lemurs. These were obtained from 4 acoustic monitors 
that were placed in a sub-humid rainforest site (Mangevo) in the 
southeast of Ranomafana National Park in Madagascar. Specially, 2 
SongMeter SM4's (Wildlife Acoustics) with a sampling rate of 
48,000Hz and 2 Swift recorders (Cornell Center for Conservation 
Bioacoustics) with a sampling rate of 16,000Hz were used. Re
cordings were collected continuously between May and August 
2019. The target detection was the roar-shriek.  

2. The “alethe” dataset contained approximately 29 hours of audio that 
contained calls of the Vulnerable Thyolo Alethe. The audio data was 
collected in the Mount Mulanje Biosphere Reserve, Malawi using 10 
Audiomoths (Hill et al., 2019). The sampling rate was set to 
32,000Hz and the recordings were obtained over five days in 
November 2020. The target detection was the single syllable call.  

3. The “gibbons” dataset contained approximately 70 hours of audio 
obtained from an existing study on the Critically Endangered Hainan 
gibbons, whereby 8 Song Meter SM3 recorders (Wildlife Acoustics, 
Maynard, Massachusetts) were used to collect audio data in 
Bawangling National Nature Reserve, Hainan, China. The sampling 
rate was 9,600Hz. While a larger collection of audio recordings exists 
(Dufourq et al., 2021), we randomly selected and manually anno
tated 69 files that were not annotated in the original study (Dufourq 
et al., 2021). This was done to contribute additional annotated data 
related to Hainan gibbons. Recordings were collected between 
March to August 2016. The target detection were all vocalisations 
(phrases and duets).  

4. The “whydah” dataset contained approximately 60 hours of audio 
data containing calls of the pin-tailed whydah and was collected 
using one Audiomoth at the Intaka Island Nature Reserve in Cape 
Town, South Africa as part of this study. The sampling rate was set to 

1 https://github.com/tensorflow/models/tree/master/research/audioset/ya 
mnet  

2 https://xeno-canto.org/ 
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48,000Hz and these were obtained over two weeks in January 2021. 
The target detection were individual phrases. 

3.2. Data analysis 

We treated each dataset as a binary classification problem. During 
the annotation process we thus annotated each call of the particular 
species for that dataset as the presence class, and we annotated any other 
sound (biophony, geophony or anthropophony) as the absence class. For 
each dataset, every audio file was manually annotated using Sonic Vis
ualiser. This was done using the “boxes layer” feature and enabled us to 
draw bounding boxes around each call. By doing so, the start and end 
times were captured along with a binary label (presence or absence). 
The length of each bounding box varied based on the duration of the 
sound being annotated. To label the absence class, we randomly placed 
bounding boxes of varying length throughout each file. Annotating 
vocalisations of other species was an important consideration as our 
preliminary results revealed that the neural networks would produce a 
large number of false positives if other species’ vocalisations were not 
annotated. We only created bounding boxes for the absence class if the 
sound was within the frequency range of the species of interest for that 
particular dataset. Thus, if the frequency of the sound was outside of the 
range for the particular species for the dataset, then that sound was not 
annotated as it would not benefit the absence class. 

Since CNNs require a fixed input size, we studied the vocalisations 
within the presence class for each dataset to determine the character
istics of the calls which would allow us to create fixed input, which we 
refer to as segments. For example, the Hainan gibbon calls vary from 2 to 
9 s (Dufourq et al., 2021), and thus a suitable input size was 4 s to ensure 
that the smallest call would fit within the segment. A longer input (>4 
seconds) would result in CNNs with more network parameters, an un
desirable consequence as this would increase the chances to overfit. A 
shorter input (<4 s) would not contain enough information, especially 
in cases where the individual pulses that make up a call are long. A short 
input could omit parts of the call. Preliminary experiments were con
ducted on the different datasets to minimise the input length as much as 
possible, thus minimising network parameters. The characteristics of 
interest were the call duration, as well as the minimum and maximum 
values associated with the fundamental frequency for the calls. We did 
not consider any harmonics within the calls as preliminary results 
revealed that it was sufficient to only consider the fundamental 
frequency. 

To create the input for the CNNs we performed four pre-processing 
steps; similar to the approach used in Dufourq et al. (2021). Firstly, 
we applied a low pass filter on each audio file. This was done as a means 
of reducing aliasing artefacts which can arise when downsampling an 
audio file. The cut-off rate associated with the filter was different for 
each dataset and was selected based on the maximum frequency of the 
respective species’ call within the presence class. Secondly, we down
sampled each audio file as a means of reducing the computational re
quirements for processing all of the files as higher frequencies were not 
needed. We set the nyquist rate to the maximum frequency for each 
species’ call and set the downsampling rate to be twice the nyquist rate. 

Thirdly, we extracted a number of audio segments from each training 
audio file based on the annotations for both classes. The length, l, of the 
audio segments (denoted in seconds) was different for each dataset. This 
was done using a sliding window approach. Each annotation contains a 
start and end time (denoted in seconds). For each annotation, we start by 
placing the window at the start time and extract a segment of audio 
containing the amplitude values between the start time and start time + l. 
Then, the window is moved by one second in time and another segment 
is extracted (start time + 1, start time + l + 1). This is repeated a number 
of times until the end of the sliding window exceeds the end time for that 
annotation. This process is repeated for each annotation, and as a result, 
a dataset is created containing various audio segments for the presence 
and absence class. 

Finally, audio segments were then converted into mel-frequency 
spectrograms representing a two dimensional array. Table 1 presents 
the spectrogram parameters used in this study. These were determined 
by studying the characteristics of the calls in each dataset and via pre
liminary experiments and a validation set. The values associated with 
the low pass filter, downsampling and Nyquist rate were set based on the 
maximum frequency for each species of interest. The segment duration 
were determined by studying the length of the pulses within each 
vocalisation for the species. Fig. 1 illustrates the pre-processing steps. 

3.3. Experimental design 

We used four experiments to investigate the effects of transfer 
learning, especially within the context of data scarcity. More specif
ically, we attempt to answer the question “can a CNN be successfully 
trained on very few verified calls?”. By answering this, this would enable 
bioacoustics researchers to spend less effort in manually labelling calls 
prior to training CNNs. Typically, a researcher would need to manually 
label a large quantity of data – a labour intensive and time consuming 
task. We randomly selected a subset of 25, 50, 100, and 200 spectro
grams within the presence class. In order to overcome class imbalance 
issues we randomly augmented the presence spectrograms by applying a 
time-shift operation to generate enough synthetic spectrograms such 
that the number of spectrograms in both classes were equal. The time- 
shifting operation involved taking the starting time of a spectrogram 
and shifting the data by random integer increment and wrapping back so 
that the spectrogram duration was not changed. This is similar to how it 
was implemented in Dufourq et al. (2021) – establishing class balance 
results in the best performance. 

We illustrate this explanation with an example on the gibbon data. 
Once the gibbon binary spectrogram dataset was created, we randomly 
selected 25 presence spectrograms. There were 3000 absence spectro
grams for the gibbons dataset. Thus, to ensure class balance, the 25 
presence spectrograms had to be augmented 120 times using time- 
shifting (25 × 120 = 3000). Thus, we would have 3000 presence and 
3000 absence spectrograms for the gibbons. However, as another 
example, should the sample size be 50, then for the gibbon data we 
would need to augment 60 times to ensure class balance 
(50 × 60 = 3000). We set the maximum sample size to 200 as we 
already know from the literature that CNNs perform well on large 
datasets, however the scope of this study is on very small datasets. The 
number of absence spectrograms in the gibbons dataset was 3000, for the 
lemurs it was 2500, for the alethe it was 1200 and for the whydah dataset 
it was 4100. 

All the CNNs in this study were initialised to pre-trained ImageNet 
weights as this was the most common approach reported in the literature 
surveyed. We compared 12 popular CNN architectures (Table 2). For 
each one we removed the classifier and created a randomly initialised 
(using Xavier initialisation (Glorot and Bengio, 2010)) two-unit softmax 
output layer. This was done as it is the simplest possible implementation 
and relates to the goals of this study in keeping the details simple, and to 
facilitate understanding and usage. We compared two main approaches 
for transfer learning. The first was to freeze the feature extractor and 
fine-tune the output layer (denoted as no fine-tuning), and the second was 
to fine-tune both the feature extractor and the output layer (denoted as 

Table 1 
Pre-processing hyper-parameters for each dataset and the number of testing files 
used.   

Lemurs Alethe Gibbons Whydah 

Low pass filter cut off 4000 3100 2000 9000 
Downsampling rate 9600 6400 4800 18400 
Nyquist rate 4800 3200 2400 9200 
Segment duration 4 2 4 3 
Number of testing files 46 27 22 78 
Testing time (min) 1840 810 1300 1560  
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fine-tuning). 
For each of the experiments we executed the training of each CNN a 

number of times so that a distribution of accuracy metrics could be 
determined. This was also done since there is a stochastic aspect to CNNs 
and thus reporting on few executions would be misleading. For each 

execution the weights in the output layer of the CNN were randomly 
initialised. We split each dataset into training (60%) and testing (40%) 
by randomly selecting entire audio files – similar to other machine 
learning studies. To ensure a fair evaluation, we split the data in such a 
way that the training audio files were mutually exclusive to the testing 
audio files. The testing files were generally recordings over different 
days. For testing, the CNNs predicted two softmax outputs on each entire 
testing file. The final class was assigned based on the softmax output 
which had a value greater than 0.5. This decision threshold was not 
optimised to keep the resulting models as accessible and easy-to-use as 
possible. This process was done using a sliding window of constant time 
duration. The window is shifted by 1 second until the network had 
predicted on the entire file. The testing files were manually annotated 
and thus we could compute the performance of the network on each 
testing file and report on the F1-score as it was commonly used in 
literature. Unless stated otherwise, model training and testing was done 
on Microsoft Azure using the Data Science Virtual Machine and a NCv2- 
series virtual machine (NVIDIA Tesla P100 GPU). 

Given that pre-trained networks expect a 3 channel input (corre
sponding to the 3 channels in a colour image), the first experiment was 
an investigation on the type of input spectrogram representation. It was 
unclear from the literature as to the best representation. We explored the 
simplest representation for which the spectrogram is a greyscaled image 
that is duplicated twice to form the 3 channel input (e.g. Sankupellay 
and Konovalov (2018)) – denoted as duplicate. Next, we explored a 

Read .wav
audio file

Apply a low
pass filter

Downsample
the audio

From each
presence

annotations,
extract presence

segments

From each
absence

annotations,
extract absence

segments

Convert to
spectrogram

Convert to
spectrogram

Combine to
create binary

dataset

Fig. 1. Four binary datasets were created. For each one, the dataset was made by reading in every audio file, one at a time, and applying four pre-processing steps. 
Segment duration varied for each dataset as well was spectrogram parameters, detailed in Table 1. 

Table 2 
The 12 CNNs compared in this study. The number of trainable network pa
rameters are shown for the case where the feature extractor was fine-tuned (with 
FT) and where the feature extractor was frozen (without FT).  

Architecture Study Parameters 
with FT 

Parameters 
without FT 

DenseNet121 Huang et al. (2017) 6,986,626 32,770 
DenseNet169 Huang et al. (2017) 12,537,730 53,250 
DenseNet201 Huang et al. (2017) 18,154,370 61,442 
InceptionResNetV2 Szegedy et al. (2017) 54,294,626 18,434 
InceptionV3 Szegedy et al. (2016) 21,792,930 24,578 
MobileNetV2 Howard et al. (2017) 2,275,074 51,202 
ResNet101 He et al. (2016a) 42,634,754 81,922 
ResNet101V2 He et al. (2016a) 42,610,818 81,922 
ResNet152V2 He et al. (2016a) 58,269,826 81,922 
ResNet50V2 He et al. (2016a) 23,601,282 81,922 
VGG16 Simonyan and 

Zisserman (2014) 
14,731,074 16,386 

Xception Chollet (2017) 20,888,874 81,922  

Fig. 2. Top: On the left is the original spectrogram (containing Hainan gibbon vocalisations), S, which is duplicated twice to form the 3 channel input requirement. In 
this study this input configuration is called duplicate. Bottom: On the left is the original spectrogram (containing Hainan gibbon vocalisations) for which two 
additional channels are formed by taking the exponent of 3 and 5. Since the spectrograms are normalised between [0, 1] the exponent makes the spectrogram darker. 
In this study this input configuration is called exponent. 
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second representation to determine if classification performance could 
be improved by manipulating the spectrograms. We explored the effect 
of taking the values within the spectrogram and applying a constant 
exponent, say a, on each original spectrogram value to create a second 
channel, and a separate constant exponent, say b, on the same original 
spectrogram value to create the third channel. This second representa
tion was denoted as exponent. In this spectrogram representation the first 
channel was the original spectrogram values (essentially an exponent of 
1). Thus, if we denote the original spectrogram as S, then the three 
channels would be (S1, Sa, Sb). We compared exponent values of (S1, S2, 
S3) and then (S1, S3, S5). Applying an exponent to a normalised spec
trogram (for which the values are between 0 and 1) will result in the 
values becoming smaller. Thus, parts of the spectrogram with little 
sound will be decreased, while strong signals will still be visible. Fig. 2 
illustrates this. The two representations were used as input to the 12 
CNNs, the feature extractor was frozen (no fine-tuning setting) and we 
compared input sizes of 25, 50, 100 on three datasets (lemurs, alethe and 
gibbons). The results were collected over 15 unique executions. 

The second experiment follows the findings from the first in that the 
best input representation was held constant, and then a comparison of 
the 12 CNNs was performed to determine the most suitable one. The 

feature extractor was frozen (no fine-tuned setting) and we compared 
input sizes of 25, 50, 100 on three datasets (lemurs, alethe and gibbons). 
The results were collected over 15 unique executions. 

The third experiment also holds the input representation constant at 
the best value found in experiment 1, and then compares freezing or 
fine-tuning the feature extractor. This was done for the 12 CNNs to 
determine, firstly, which one would benefit the most from fine-tuning 
the feature extractor and secondly, to determine the relative perfor
mance when the feature extractor was frozen. Two configurations for the 
input size were explored (50 and 100 samples). These two were selected 
as it contains enough data to observe performance gains as a result of 
fine-tuning the feature extractor. For this experiment we ran 35 unique 
executions – a larger number of unique executions to provide a thorough 
investigation of fine-tuning for bioacoustics classification as perfor
mance gains were observed in computer vision research. Three datasets 
were used (lemurs, alethe and gibbons). 

The fourth experiment holds the input representation and architec
ture constant at the best values found in experiment 1 and 2 respec
tively. This experiment was conducted to determine the performance on 
the four datasets when using 25, 50, 100 and 200 samples. Due to 
computational restrictions we only used three datasets in the first three 
experiments. For each dataset and input size configuration we compared 
the performance of the CNNs when the feature extractor was frozen and 
when fine-tuned. This was done to determine which approach is most 
suitable for bioacoustic problems for which there are data scarcity is
sues. The results were collected over 15 unique executions. 

The software code was written in Python 3 for audio pre-processing 
and the general methodology, and the CNNs were implemented in 
Tensorflow 2 (Abadi et al., 2015). Each CNN was trained for 50 epochs 
(number of iterations of the CNN learning algorithm) using the Adam 
optimiser (Kingma and Ba, 2014) and a batch size of 32. The hyper- 
parameters were obtained by conducting a random search using 
similar values to that in the study of Dufourq et al. (2021). Spectrograms 
were generated using the Librosa library (McFee et al., 2020). 

4. Results 

Under many conditions, CNNs pre-trained on the ImageNet dataset 
were able to produce classifiers which were able to identify calls in 
bioacoustic datasets with a high degree of accuracy (Table 3). Our 
comparison over the 12 pre-trained CNNs revealed that ResNet101V2 
and ResNet152V2 produced the best results (Table 4). We compared the 
CNNs when the feature extractor was frozen and when it was fine-tuned 
and the difference in performance varied across the CNNs. Our findings 
reveal that when only 25 samples are used freezing the feature extractor 
results in CNNs that were as good as CNNs where the feature extractor 
was fine-tuned (Fig. 6). However, when more data was used, fine-tuning 
the feature extractor was the most optimal approach. Finally, we show 
that the performance of the CNNs can be improved when taking the 

Table 3 
F1 score comparison of the two network input methods, duplication of spec
trograms and applying an exponent to the spectrogram. The mean, minimum, 
maximum and standard deviation is provided for each dataset and input sample 
configuration. The results were obtained from 14 unique executions on each 
configuration. The feature extractor was frozen and thus only the weights in the 
classifier part of the CNN was optimised. For each dataset and input size 
configuration, the best result between exponent and duplication method is 
highlighted in bold. In all cases, the exponent method which achieved the best 
result compared to simply duplicating the spectrogram.  

Dataset Sample size Input method Mean Min Max Sdev 

Alethe 25 Exponent 90.74 83.50 93.32 2.36 
Alethe 25 Duplicate 86.35 74.38 91.94 4.88 
Alethe 50 Exponent 93.56 90.85 95.35 1.25 
Alethe 50 Duplicate 89.18 80.56 95.35 1.25 
Alethe 100 Exponent 95.24 91.65 96.58 1.27 
Alethe 100 Duplicate 90.88 80.39 95.47 4.35 
Lemurs 25 Exponent 89.85 87.74 92.05 1.35 
Lemurs 25 Duplicate 88.52 85.10 91.35 1.99 
Lemurs 50 Exponent 93.39 91.02 95.37 1.32 
Lemurs 50 Duplicate 91.65 86.65 94.74 2.53 
Lemurs 100 Exponent 95.30 91.42 97.01 1.39 
Lemurs 100 Duplicate 93.59 86.95 96.42 2.87 
Gibbons 25 Exponent 94.89 92.22 97.26 1.15 
Gibbons 25 Duplicate 94.33 92.26 95.83 0.83 
Gibbons 50 Exponent 96.83 95.42 98.09 0.68 
Gibbons 50 Duplicate 96.52 95.45 97.44 0.54 
Gibbons 100 Exponent 97.96 96.93 98.74 0.44 
Gibbons 100 Duplicate 97.66 96.72 98.35 0.48  

Table 4 
Comparison of the average F1 score across the different network architectures and dataset configurations. The exponent approach was used for the spectrogram input. 
The feature extracted was frozen. The results are averaged across 13 unique executions. The results are ordered (highest to lowed) based on the average of each 
network architecture across all configurations. The best three performing network architectures on a particular dataset configuration is highlighted in bold.  

Method G 25 G 50 G 100 L 25 L 50 L 100 A 25 A 50 A 100 

ResNet101V2 95.30 97.40 96.27 92.05 94.92 97.01 92.10 95.37 98.36 
ResNet152V2 95.18 96.92 96.58 91.42 95.31 96.62 93.32 94.94 98.35 
InceptionResNetV2 94.70 96.75 96.57 90.07 95.35 95.73 92.73 93.95 97.84 
ResNet50V2 94.97 97.04 95.13 91.96 93.66 96.36 90.94 94.82 98.12 
DenseNet169 94.92 96.95 95.69 89.33 93.78 95.59 91.76 93.32 97.95 
DenseNet201 94.84 96.72 95.86 90.08 93.90 95.59 91.02 93.12 98.13 
VGG16 97.26 98.09 94.99 87.74 92.93 95.01 90.26 92.32 98.74 
DenseNet121 94.58 96.69 95.00 89.90 92.82 95.81 90.26 93.99 98.06 
InceptionV3 92.22 95.42 95.40 88.72 93.23 95.45 91.21 93.28 96.93 
ResNet101 96.17 97.49 94.23 90.01 92.21 91.42 91.00 91.02 97.80 
Xception 93.88 95.79 95.50 88.15 93.81 94.10 90.74 91.12 97.51 
MobileNetV2 94.62 96.65 91.65 88.78 90.85 94.91 83.50 93.40 97.71  
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Fig. 6. Comparison of the ResNet152V2 on different configurations of input size and datasets. The different when the feature extractor was fine-tuned (coloured 
blue) and when the feature extractor was frozen is displayed. The results were obtained across 13 unique executions. 
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exponent of the spectrograms as opposed to simply duplicating the 
spectrograms to create the 3 channel input (Table 3). 

Table 3 presents the results for experiment 1. The findings reveal that 
the performance was on average better when the spectrograms were 
raised to a different exponent (exponent) as opposed to simply dupli
cating them (duplicate). This result was more apparent on the alethe 
dataset. On all the datasets and configurations the exponent approach 
obtained the highest F1 score, and the standard deviation was also on 
average smaller for the exponent approach. Following these findings, we 
used the exponent approach as input to the remaining experiments. 

The findings for experiment 2 are presented in Table 4. The results 
are ordered based on the average performance across all of the datasets. 
ResNet101V2 resulted in the best overall performance (average of 
95.42%) and closely followed by ResNet152V2 (average of 95.40%). 
MobileNetV2, on average, ranked last with an average performance of 
92.45%. While ResNet101V2 ranked first on in this experiment, we 
selected ResNet152V2 for the remaining experiments due to the fact that 
ResNet152V2 outperforms ResNet101V2 (He et al., 2016b) on the 
ImageNet dataset. 

Figs. 3 and 4 present the findings for experiment 3. The CNN results 
are presented in pairs (with fine-tuning of the feature extractor and 
without) and the results are ordered based on the difference of each pair. 
When 50 samples were used (Fig. 3), the greatest improvement in F1 
score was obtained from ResNet101 (median improvement of 3.36%). 
An improvement was achieved by all CNNs except for Xception (median 
decrease of − 0.03%). The best median performance was obtained by 
ResNet152V2 and ResNet101V2 for both the fine-tuning and no fine- 
tuning setting. The lowest standard deviation was obtained by 
ResNet152V2 for both fine-tuning (1.38) and no fine-tuning (1.19) 
suggesting that ResNet152V2 (no fine-tuning) was the most robust to the 
different training samples from each unique execution. On average 
across all CNNs, no-fine tuning resulted in a slightly lower standard 
deviation (2.07) compared to fine tuning (1.96). When 100 samples 
were used (Fig. 4), the greatest improvement was also obtained 
ResNet101 (median improvement of 1.51%). MobileNetV2 had a 
decrease in median performance of − 1.33%. ResNet152V2 and 
ResNet101V2 obtained the best performance for both the fine-tuning 
and no fine-tuning setting. On average across all CNNs, no-fine tuning 

Fig. 3. F1 score comparison of the different architectures when using 50 samples for positive class across 37 unique executions of each architecture. Each archi
tecture is displayed as a pair, with the feature extractor fine-tuned (coloured blue) and feature extractor frozen, and the results are ordered by difference in per
formance between fine-tuning and no fine-tuning. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

E. Dufourq et al.                                                                                                                                                                                                                                



Ecological Informatics 70 (2022) 101688

9

resulted in a slightly higher standard deviation (1.61) compared to fine 
tuning (1.35). 

The findings for experiment 4 are presented in Fig. 6. For an input of 
25 samples, the performance when the feature extractor was not fine- 
tuned resulted in a higher median result on three datasets (lemurs, gib
bons and whydah). For the gibbons dataset, the best result was achieved 
when 25 samples were used and the feature extractor was frozen 
compared to when the feature extractor was fine-tuned. For 25 samples, 
ResNet152V2 with no fine-tuning was robust to different training sam
ples (smaller standard deviation on the lemurs, alethe and whydah 
datasets). These findings indicate that it is possible to use a pre-trained 
CNN and fine-tune the softmax output layer with as few as 25 samples 
and obtain good classifiers. This observation changed when the number 
of samples increased to 50, 100 and 200. When more input samples were 
used, the findings show that fine tuning the feature extractor resulted in 
better performance across all of the datasets. 

5. Discussion 

Continued advances in deep learning, computer vision and speech 

recognition offer many opportunities for bioacoustics research. While 
deep learning holds significant promise for the creation of PAM classifier 
models, CNNs would be even more widely used if they were easier to 
train, required less machine learning expertise to be implemented and if 
they could be trained on small datasets without overfitting. Transfer 
learning benefits from the fact that very little training is required and 
that fewer human decisions are required in the design of the 
architecture. 

Using a pre-trained CNN feature extractor and adding a softmax 
output layer is less complex than having to optimise a CNN from scratch 
and requires less network design decisions and also less time on hyper- 
parameter tuning. We thus argue that this approach renders the use of 
deep learning much more accessible to practitioners. Extensive hyper- 
parameter tuning also requires expensive GPU hardware which might 
not be accessible to practitioners. Our findings revealed that results 
could be obtained on limited hardware within 9 h (10 epochs of fine- 
tuning the feature extractor) which would cost 2USD, at the time of 
writing, if that was executed on a Microsoft Azure virtual machine – thus 
rendering this approach affordable and accessible. 

It is well accepted that no single machine learning algorithm – or in 

Fig. 4. F1 score comparison of the different architectures when using 100 samples for positive class across 37 unique executions of each architecture. Each ar
chitecture is displayed as a pair, with the feature extractor fine-tuned (coloured blue) and feature extractor frozen, and the results are ordered by difference in 
performance between fine-tuning and no fine-tuning. 
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this case a CNN – will consistently perform well across all applications 
and datasets. Table 4 shows that, VGG16 for example, obtained the best 
results on three configurations, but also did not achieve equally as good 
results on other configurations. ResNet101V2 and ResNet152V2 on 
average performed well across nearly all configurations and we thus 
recommend that either of these architectures are used as a starting point 
for researchers wanting to use pre-trained CNNs for bioacoustics 
research. 

The experiments presented in Fig. 6 reveal that if very little data is 
available – in our case 25 examples – that pre-trained ResNet152V2 with 
the feature extractor frozen can yield good performance (up to 82% F1 
score on the lemurs, 77% on the gibbons and 75% on the whydah 
dataset). This suggests that when conducting an acoustic survey, a 

practitioner can manually annotate a few examples and then start using 
a pre-trained ResNet152V2 model to find new examples. Once addi
tional examples have been found via the pre-trained model, these new 
examples can be incorporated into the training set. This iterative process 
can be repeated until a large training set is obtained, after which, the 
pre-trained CNN can be fine-tuned to create a more robust classifier. We 
thus argue that practitioners can begin using CNNs relatively early on 
within a project to speed up the rate at which calls are found. These 
findings oppose existing knowledge that deep learning requires large 
training datasets. One possible explanation for the good performance 
achieved in this study is due to the high signal-to-noise ratio. It was also 
hypothesised that good performance was obtained due to the lack of 
variation within the calls (e.g. gibbons and whydah datasets), however 

Fig. 5. Variation within calling bouts in the lemurs dataset. The spectrograms were pre-processed. Top: black-and-white ruffed lemur calls with more individuals 
calling simultaneously as compared to the bottom spectrogram. 
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this is not likely the case since the calls in the lemurs dataset have large 
variation within a calling bout – especially since a varying number of 
individuals call at the same time (Fig. 5). 

CNNs are commonly executed on GPU hardware which results in 
faster training time. However, we deliberately trained ResNet152V2 on 
CPUs in an attempt to verify that training could be executed on less 
expensive hardware. We trained the CNN on a virtual machine running 
the “E2asV4” instance on Microsoft Azure with 16GB RAM and a 
2.35Ghz AMD EPYC™ 7452 2 vCPU which at the time of writing cost 
0.218 USD per hour. When the feature extractor was frozen, it took 
between 450 and 780 s to complete one epoch, and when the feature 
extractor was fine-tuned it took between 2035 and 3100 s per epoch. 
While these executions are time consuming, these findings reveal that it 
is possible to train pre-trained models on less expensive hardware 
making them accessible to researchers and practitioners. 

Models pre-trained on ImageNet require a three channel input and it 
was unclear from the literature as to what is the best approach. A 
common approach is to simply duplicate the spectrogram. However, the 
findings in this study revealed that better performance can be achieved 
via manipulation of the spectrograms, in our case by taking exponents. 
This suggests that machine learning researchers should further explore 
this to determine if additional performance could be obtained by 
manipulating the input space. Similar findings have been observed in 
different areas of computer vision (Luo et al., 2017). In our investigation 
the exponents darkened areas of the spectrogam which had weaker 
signals and potentially could act as a means of reducing environmental 
noise to enable the CNN to learn better features for classification pur
poses. We also explored changing the fast Fourier transform window size 
between the 3 channels but this led to a decrease in performance. 

6. Conclusion 

This study is the first large-scale transfer learning experiment to 
compare a large number of modern CNNs across different bioacoustics 
datasets as a means to guide practitioners on how pre-trained CNNs can 
be used to facilitate and enable the creation of classification models. The 
emphasis of this study was to simplify the implementation as much as 
possible to demonstrate that less complexity is involved when using pre- 
trained models and that less annotated data is needed to train the 
models. This allows for more rapid development of classification models 
and less expert human time spent in manual annotation phases. Our 
findings reveal that reliable models can be trained with very little data 
(as a few as 25 calls). This will enable researchers to build models 
relatively early within the analysis phase of a project as only a few calls 
will need to be manually identified. We show that pre-trained models 
can be used in a low computational resource setting, thus enabling more 
researchers to implement this approach even if they do not have 
expensive GPUs. Our findings also reveal that performance can be 
optimised by manipulating spectrograms, which could be explored 
further. Additional experimentation on on dealing with very small 
datasets (<25 examples) would be beneficial to the research commu
nity. We hypothesis that Siamese neural networks would result in good 
model performanace and should be explored across various different 
species (Chicco, 2021; Acconcjaioco and Ntalampiras, 2021). 
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